

VIENNA

ELECTRICITY MARKETS, AND THE ROLE OF RENEWABLES & NUCLEAR **Reinhard Haas**

Energy Economics Group, **Vienna University of Technology**

PRAGUE 2.2.2016

SURVEY

- **1. Introduction: Historical background**
- 2. How prices come about (theory)
- 3. Environmental issues: CO2-prices
- 4. How prices developed in Europe
- 5. Electricity generation costs
- 6. Recent developments of nuclear
- 7. The role of Renewables
- 8. Conclusions

Electricity – THE universal technology for providing energy services

TECHNISCHE UNIVERSITÄT WIEN

VIENNA UNIVERSITY OF TECHNOLOGY

VIENNA

- How to provide access to electricity "optimal" from societies point-of-view?
- What is the optimal political "structure"? **Private, price (de-)regulation**
- How to bring about a transformation to a sustainable energy system?

UNIVERSITÄT WIEN VIENNA UNIVERSITY OF TECHNOLOGY

The European Commission's main expectation was the belief that "market forces [would] produce a better allocation of resources and greater effectiveness in the supply of services"

Intentions of the EC directive:
Competitive markets
Iower electricity prices
more environmentally benign

MWh

MWh

LONG-TERM VS **SHORT-TERM MARGINAL COSTS**

MC = C'(X) = dC(x)/dX

Marginal costs are the increment of costs due to a generation of one additional unit of kWh

P=MC

Short-term marginal costs (STMC): STMC= Fuel costs + CO2 costs

Long-term marginal costs (LTMC): LTMC= STMC + Capital costs + O&M costs

Operation/Fuel costs

ASPECTS – THE CO2-PRICE

Jän.04

Nov.04

Sep.05

Jul.06

Apr.07

Feb.08

Dez.08

CO2 Spot I CO2 Spot II

Okt.09

Aug.10

Jun.11

Apr.12

Jän.13

Nov.13

TECHNISCHE UNIVERSITÄT WIEN

VIENNA UNIVERSITY OF TECHNOLOGY

DEVELOPED IN EUROPE EUROPEAN ELECTRICITY SUB-MARKETS

4 HOW PRICES

nergy **Development of day-ahead** onomics roup electricity prices in Europe per year

VIENNA UNIVERSITY OF TECHNOLOGY

5 ELECTRICITY GENERATION COSTS ANNUITY METHOD

WIEN VIENNA **UNIVERSITY OF** TECHNOLOGY

VIENNA **UNIVERSITY OF**

Investment costs

Electricity generation Conventional 2015

where:

- C ... Total costs of electr. Generation (cent per kWh)
- C_F ... Fix costs (cent per kWh)
- C_V ... Variable costs (cent per kWh)
- C_{O&M}...Operation & maintenance costs (EUR/kW)
 -Investment costs (EUR/kW)
- α ... C.R.F. (Capital recovery factor, e.g. 0.1 for 15 years, 5% WACC)
- TFull load hours (hours per year)
- p_f ...Fuel price (cent/kg or m³)
- H ...Caloric heat content (e.g. 10 kWh per m³ for gas)
- η ... Efficiency of power plant
- C_{CO2} ... Price of CO2 (e.g. 5 EUR/ton Carbon)
- $f_{\text{CO2}} \ldots$ CO2-factor of fuel (0.2 kg Carbon/kWh)

IInvestment costs = 600 EUR/kW α ... C.R.F. = 0.1 for 15 years and 5% interest rate TFull load hours = 5000/1000 hours per year $C_{O\&M}$...Operation & maintenance costs = 20 EUR/kW p_f ...Fuel price (e.g. 25 cents/m³ natural gas) H ...Caloric heat content (e.g. 10 kWh per m³ for gas) η ...Efficiency of CCGT plant = 0.58 C_{CO2} ...Price of CO2: 5 EUR/ton Carbon) f_{CO2} ...CO2-factor of fuel (0.2 kg Carbon/kWh)

Investment costs

Electricity from new renewables 2010

Investment costs

Electricity from new renewables 2015

Generation costs

Electricity from new renewables 2010

INIVERSITÄT

- Olkiluoto-3 (Finland): Construction started in 2004, now expected to be completed 2017 (originally: 2009); 1600 MW
- Flamanville-3 (France): Construction started in 2006, now expected to be completed 2017 (originally: 2011); 1600 MW

Investment cost development nergy onomics **Olkiluoto 3 vs Flamanville 3**

roup

WIEN VIENNA UNIVERSITY OF TECHNOLOG

No insurance costs considered!

Costs vs market prices in Nordic countries

VIENNA UNIVERSITY OF TECHNOL

7. THE ROLE OF RENEWABLES

VIENNA

ECHNISCHE

CORE MOTIVATION: Policy targets for an INCREASE of RES-E!

e.g. 2020/20/20/20 targets

RES-E directive: increase share of RES-E from 12% 1997 to 22% in 2010)

EU-27: Electricity generation from "new" RES

VIENNA UNIVERSITY OF

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

Development of PV generation costs

UNIVERSITÄT WIEN VIENNA **UNIVERSITY OF**

60.0 50.0 40.0 cent/kWh 30.0 20.0 10.0 0.0

costs vs household electricity prices

VIENNA

- Markets are in a period of transition towards volatility;
- Nuclear: long lead time, uncertain costs \rightarrow high promises, low fullfilments;
- Renewables: next very interesting phase: after PV-Grid parity!
- More details: Summer school

C = 1.20 + 0.40 + 4.31 + 0.17 = 6.08 cent/kWh

1000 h/yr:

C = 6.0 + 2.0 + 4.31 + 0.17 = 12.48 cent/kWh