BASICS OF HEAT ENERGY DEMAND

prof. Ing. Jaroslav Knápek, CSc.

Czech Technical University in Prague Faculty of Electrical Engineering, Czech Republic

CZ-AT Winter School, 2021

CONTENT OF LECTURE

Importance and EU legislation

- Energy labels of building
- ⇒ Heat losses U coeff.
- Energy demand for heating
- ➡ Technology examples

Importance of energy efficiency of buildings

Buildings are currently responsible for app. 40% of energy consumption in EU and 36% of CO2 emissions

35% of buildings: older than 50 years

Reasonable improvement of energy efficiency of buildings can save 5-6% of energy consumed by EU and similarly contribute to CO2 redution

Importance of energy efficiency of buildings 2

INTRODUCTION

- Land area: 78867 km²
- Population: 10,511 mil. (2013)
- Population density: 133/km²
- GDP per capita: 388 771 CZK (nominal, 2013) (80% of EU28 GDP average, PP)
- Schengen area: yes

Key figures

- Heat sales (M€)
 - aggregated data not available, only data for individual companies and data for heat production and delivery
- Final heat consumption (TWh)
 - 39.8 TWh (total)
 - 11.6 TWh (residential)
 - 28.2 TWh (production and services)
 - 15.2 TWh (delivery to final consumers from DH systems)
- Average DH price to final consumers (c/kWh)
 - 7,56 (2011)
 - 7,91 (2012)
 - 7,87 (2013)
 - 7,93 (2014, estimation)
- Inhabitants using DH (million)
 - 4 mil.
- 1.55 mil flats (households)
- Market share of DH (%)
 - 38 %

S PŐYRY

Directive 2010/31/EU on the energy performance of buildings Directive 2012/27/EU on energy efficiency (2018 update – part of Clean energy for all europeans package

• CZ: obligation to renovate annually 3% of total floor area of public buildings (central institutions) with energy relevant area above 250 m2 – it includes 37 central institutions owning 775 buildings, required C classification is not fulfilling 586 buildings having 1.6 mil. m2 of floor area

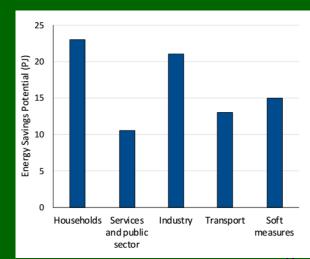
• 2017 CZ reality: 16 buildings and 15 prisons (total savings 25 TJ only)

• required savings in 2020: 51 PJ! RES target is exceed, great problems with EE targets!

Some measures:

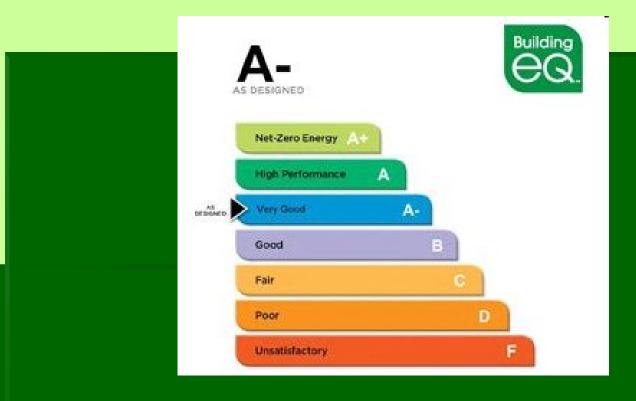
- energy labels of buildings to help customers decide, to create pressure for renovation
- inspection schemes for heating and air conditioning
- all new buildings must be nearly zero energy buildings by end of 2020
- New Green to Savings Project
- 2030 targets: reduction of energy consumption by 32.5% compared with the reference scenarion from 2007 (i.e. -0.8%/year from absolute final energy consumption)


- Within the framework of the winter energy package Regulation on the Administration of the Energy Union Regulation implies the obligation to elaborate the so-called National **Climatic and Energy Plans** First National Plans should cover the period 2021-2030 National plans should include a contribution to meeting the climateenergy targets for 2030 Green Deal – new EU strategy for decarbonization until 2030 Shift from fossil fuels and coal
- Coal biggest problem of heating branch in CZ
- Natural gas is just transient sollution


annual energy savings of 8,4 PJ – total of 462 PJ cumulative energy savings until 2030

Further tightening of mandatory annual savings => 204 PJ (2014-

2020) versus 462 PJ (2021-2030)


Estimated cost to reach the energy savings obligation for 2021-2030 with the current alternative scheme is more than 600 billion CZK (23 billion EUR)

Source: Sochor, MPO

Energy Label of Building

Based on thermal losses of building (specific heat consumption)

Consumption of energy by the premise

Industrial premises: typically individual consumption based, key driver is type of production and technology used (usually we concentrate to the utilization of waste heat or of waste products – so called secondary energy sources), key role of energy audit

Office buildings: consumption depends on quality of heat isolation (material used for walls, windows), way of heating and cooling, recuperation of energy, way of building utilization

Block of flats: design of the house, quality of heat isolation, efficiency of heating (and lighting) control, design of heating system, motivation of individual households to energy saving

Individual (family) houses: design of the house and heating system, quality of isolation material, possibility of heating (and lighting) management, individual preferences

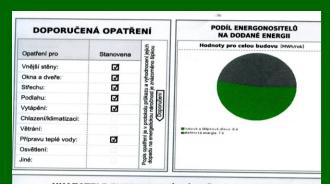
District heating sources

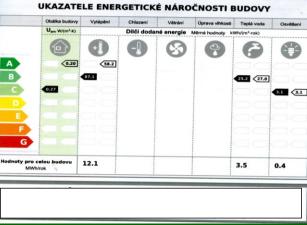
Advantages:

- Cogeneration: higher efficiency of PES utilization
- Higher flexibility, thermal inertia of big systems accumulation
- Can combine central and local sources
- Solution for cities with high population density
- Utilization of waste heat (e.g. from industry)
- Cleaning devices

Disadvantage

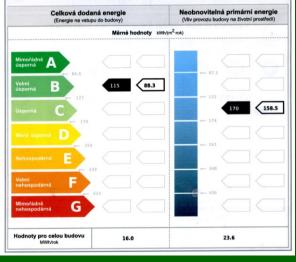
- High investment cost
- Long investment period (high risk)


Energy for family house


Note: is similar to all other types of buildings


compactness: 0,2 to 1,2

ENERGY FOR:


- space heating
- hot water preparation
- lighting
- cooling
- air ventilation
- humidity management

ENERGETICKÁ NÁROČNOST BUDOVY

Examples of U coefficients

Heat losses of the building depends on among other on its design and construction material used

U - Heat transfer coefficients: W/(m²,K):

 lower is U value of given material, the more slowly heat is able to transmit through it (given material is better heat insulator)

Examples:

- concrete 20 cm: 3.3
- brick 30 cm: 1.7
- polystyrene 30 cm: 0.12

Old windows: up to 2.7

Double insulated glazing 24 mm with argon filling: 1.1

Triple insulated glazing 36 mm with argon filling: 0.7

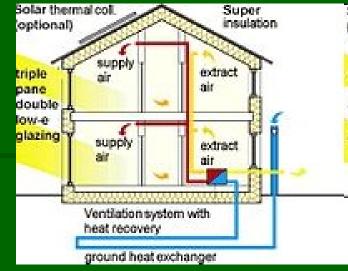
See: https://www.stavebnictvi3000.cz/vypocty/vypocet-soucinitele-prostupu-tepla-a-tepelneho-odporu-steny

Energy demand for heating

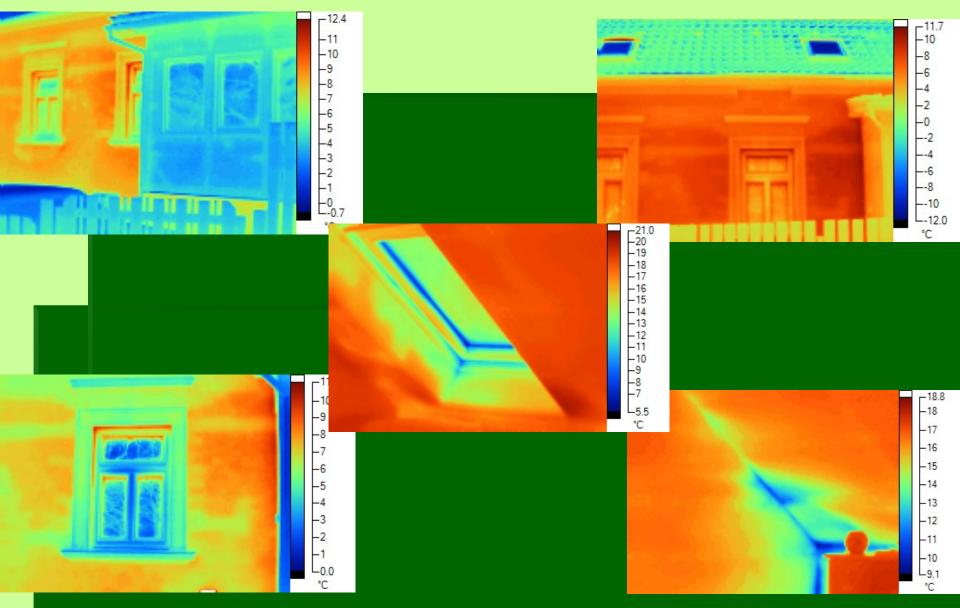
Total energy losses of the building: sum of individual contributions (walls, windows, roof, etc.)

Total value expressed in kW (depends also on size of building) for given reference temperature (e.g. -12 C)

Classification of the building


low energy house: 15-50 kWh/m2,a

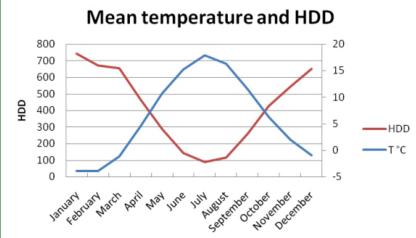
passive house: less than 15 kWh/m²,a


• 70-80ies: >200 kWh/m²,a

current standard houses: 80-120 kWh/m²,a

(we can calculate total heat demand in GJ using physical equivalent)

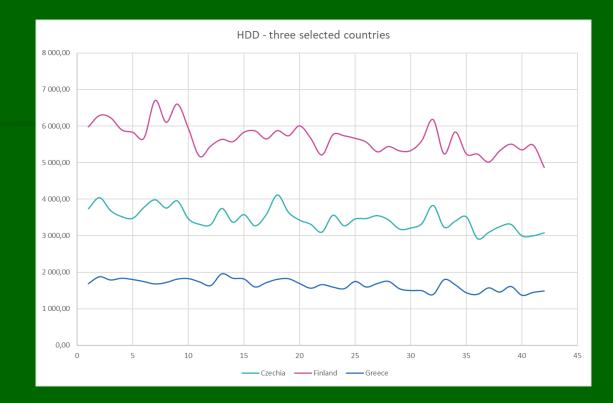
Energy demand for heating



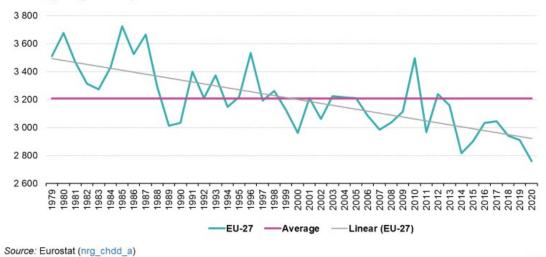
Heating degree days – HDD

 heat demand also depends on inside (e.g. 18 C) and outside temperature, HDD is used as a proxy / heating requirements for a given building at a specific location are considered to be directly proportional to the number of HDD at that location

Simplified calculation of HDD: as (18 °C - Tmean) if Tmean is lower than 18 °C (heating threshold, may be different) and zero if Tmean is greater than or equal 18 °C; Tmean is the mean daily outdoor temperature, calculated as Tmean = (Tmin + Tmax / 2)

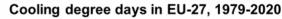

individual for each country and region (http://www.degreedays.net/)

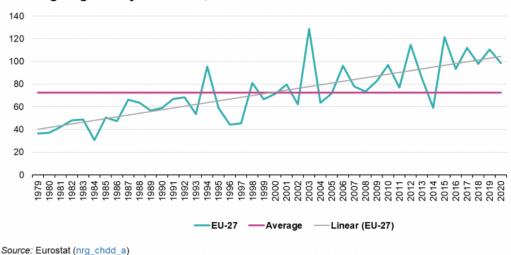
Heating degree days – HDD

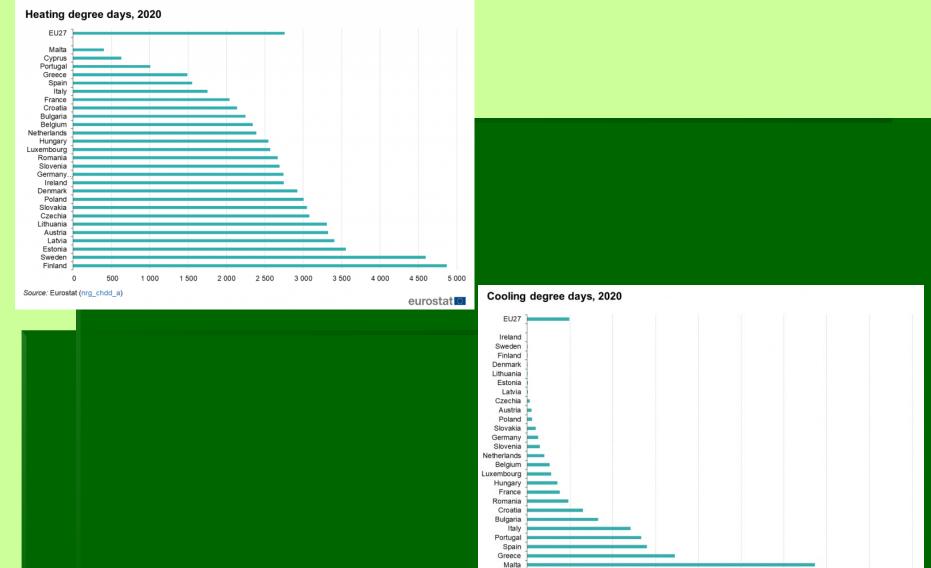

Example for three different climate regions and EU

(see http://ec.europa.eu/eurostat/data/database?node_code=nrg_chdd_a)

Heating degree days value decreased by 21 % /1979 and 2020 in the EU-27


Heating degree days in EU-27, 1979-2020


https://ec.europa.eu/eurostat/statistics


explained/index.php?title=Heating_an d_cooling_degree_days_-_statistics#Heating_and_cooling_degr ee days at EU-27 level

eurostat O

Cooling degree days (CDD) values in 2020 was more than two times higher between 1979 (37) and 2020 (99)

Source: Eurostat (nrg_chdd_a)

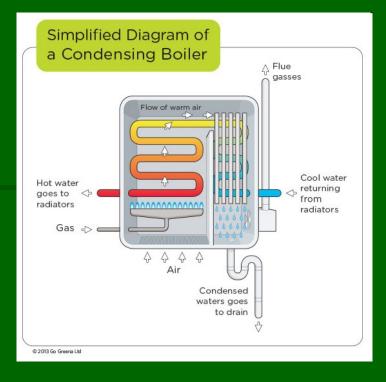
Cyprus

Energy for hot water preparation

Typically between 20-25% of total energy consumption of household

- depends of behavior, number of persons, etc.
- hot water: 55 C
- hot water preparation:
 - individual system: accumulation boiler or water flow heaters (gas or electricity
 - system for heating and hot water preparation
- water consumption: highly variable (older standard app. 35 m3/person, year app. 100 l per day)
 - toilet: 5-12 I per usage
 - shower: 20-50 | per person
 - bath: 100-150 l

Heating from District heating system:


- central source of heat
 - heating plant
 - cogeneration plant (back pressure turbine, condensing turbine)
 - hot water or steam pipelines
- advantages:
 - higher utilization of primary energy and lower CO₂ emissions
 - lower conventional emissions (e.g. desulphurization units)
 - easy to use at consumption point
- disadvantages:

 high investment cost and higher portion of fix cost – mortal spiral when energy savings are massively introduced at consumers side in existing DHS

21

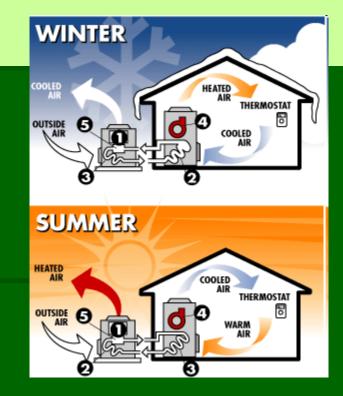
Central boiler for building (family house) – efficiency of typical heating devices

 natural gas • conventional: up to 90%, but old one can have only 65-75% • condensing: up to 105% waste heat in flue gases to pre-heat cold water entering the boiler. Lower temperatures of heating water Outflow of condensate water

Central boiler for building (family house) – efficiency of typical heating devices

- coal boiler
 - conventional (old): 66% (sometimes misused for waste burning)
 - modern: regulation of efficiency: 73%, since 2018: 82% (automatic delivery of coal into boiler)
- pellets boiler: 92% (also advantage in very low amount of ash)

• electric boiler


- with or without accumulation
- accumulation can cover energy requirement when boilers is switched of in period of low tariff (if available)
- wood boiler: 75-85% (depends on class)
 - HV of wood depends of moisture content, dry wood needed

Heat pums

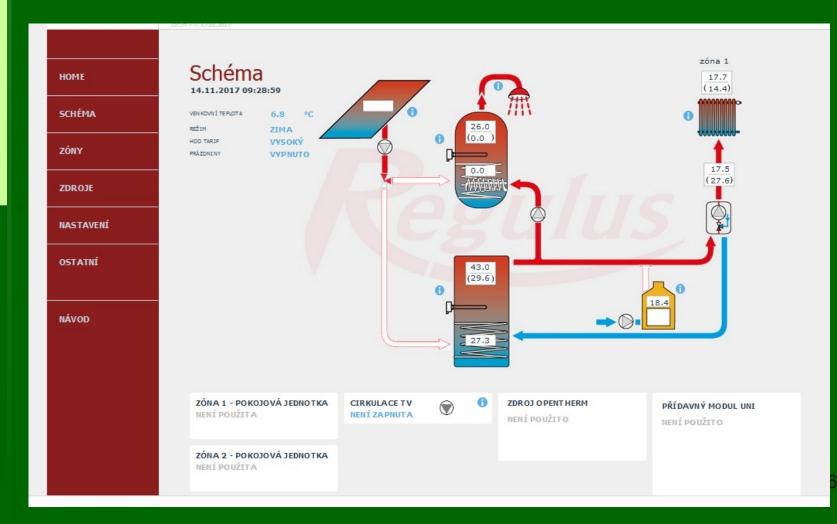
- air water type
- water water type
- ground water type
- installed power in kW_{th} to cover

majority of heating season

- collection of energy from outer space
- coefficient of performance
 - depends on type
 - depends on outer temperature
 and temperature of produced heat
 3 to 5

Solar energy for heating and hot water

Usually hybrid system


 design to cover all energy requirement of house would lead to extremely ineffective economic solutions

• PV for hot water has advantages in no effect to power grid

 solar thermal collector – effective way but troubles with heat consumption in summer period (e.g. to cool by pool or special design is needed)

Hybrid system for heating and hot water

Example of hybrid system combining biomass stove with accumulation into water and electric heating

Thank you for attention